Physicochemical Properties and Structure of MgMoO₄–MoO₃ Catalysts

W. Oganowski, J. Hanuza, B. Jezowska-Trzebiatowska and J. Wrzyszcz

Institute of Organic Chemistry, Department of Petrochemistry,
Polish Academy of Sciences¹;
and Institute of Low Temperature and Structure Research,
Polish Academy of Sciences, Department of Structural Chemistry,²
Wrocław, Poland

Received May 20, 1974; revised March 14, 1975

An attempt was made to elucidate the properties of the $MgMoO_4$ - MoO_3 system containing various amounts of MoO_3 which is active in the oxidizing dehydrogenation reaction converting ethylbenzene into styrene. By applying ir, Ra, ESR spectroscopy and the DTA and DTG methods, the samples containing an octahedral phase on the tetrahedral $MgMoO_4$ base were found to have catalytic activity. Besides, the active centers include the Mo(V) ion, most probably in the MoO_5 ⁵⁻ type polyhedra with a distorted pyramid structure.

INTRODUCTION

The selective oxidation reactions of hydrocarbons are normally catalyzed by the systems consisting of metal oxides which form either solid solutions, oxy-salt type compounds or mixtures of both. Typical oxidizing dehydrogenation catalysts are, among others, bismuth, cobalt and nickel molybdates. The catalytic properties of the molybdates are related to their structure which depends on the method of preparation and thermal treatment.

Sleight *et al.* (1) have shown that Fe(II), Co and Ni molybdates may occur in three structural modifications. The molybdates obtained at high pressures have a wolf-ramite structure while those synthesized under normal pressure at low and high temperatures belong to the space group $C = 2/m - C_{2h}^3$ (Z = 8) with a lattice symmetry C_2 and C_s . Their cell dimensions are similar, but they are not isotypic. β -FeMoO₄ and β -NiMoO₄ are isotypic to α -MnMoO₄

and have a tetrahedral structure of the coordination polyhedra. On the other hand α -FeMoO₄, α -NiMoO₄ and α -CoMoO₄ form another group of isotypes with octahedral coordination around Mo.

The structure of magnesium molybdate which is subject to our studies has not been known until now. Abrahams and Reddy (2) as well as Young and Schwartz (3) suggest that α -MgMoO₄ is isotypic with α -MnMoO₄.

Structural studies were also carried out on solid solutions consisting of molybdates and molybdenum trioxide, i.e., of the $X_2MoO_4-MoO_3$ systems where X=K, Rb, Li (4,5). X-Ray diffraction studies enabled us to establish the existence of three phases with the following stoichiometric compositions: $X_2Mo_2O_7$, $X_2Mo_3O_{10}$ and $X_2Mo_4O_{13}$ (4). The main structural elements of these phases are distorted octahedra in which there occur two short Mo-O bonds (1.67-1.75 Å), two medium bonds in *trans* position to the former one (1.89-2.04 Å) and two long bonds (2.13-2.64).

In the present study an attempt was

¹ W. O., J. W. ² J. H., B. J-T.

made to elucidate the properties of the MgMoO₄-MoO₃ system which, according to its chemical composition, possessed different activities in the oxidative dehydrogenation of ethylbenzene to styrene. To this effect ir, Ra and ESR spectroscopy as well as DTA methods were used.

EXPERIMENTAL METHODS

I. Preparation of Catalysts

The catalysts were obtained by boiling aqueous suspensions of MgO and MoO₃, MgO and H₂MoO₄ · 2H₂O or MgCO₃ and MoO₃. The 10% MgMoO₄ solution thus obtained was cooled to room temperature and filtered, then a crystalline precipitate was formed by adding 2 vol of acetone/1 vol of solution. After 24 hr the precipitate was filtered off, washed with acetone and dried for 24 hr at room temperature. Af-

terwards the catalysts were dried for 4 hr at 120°C and calcined for 2 hr at 550°C, and in one case at 800°C. The active catalysts were prepared either from stoichiometric amounts of reactants or by employing up to about 8% excess MoO₃. On the other hand, inactive catalysts were prepared by introducing 2% excess MgO or MgCO₃ as compared with the stoichiometric amounts, into the reaction mixture. The activity of catalysts does not depend on the kind of reactants used for synthesis, but it depends on the amount of excess MoO₃ in the final product. The data pertaining to the catalysts in question are given in Table 1.

II. Characterization of the Catalysts

Catalytic activities were determined in a tubular quartz reactor by the dynamic method without recirculation. Catalyst

TABLE 1
SPECIFICATION OF CATALYSTS EXAMINED

		Excess M MgO co MgM (% by	ntent in IoO4	Calcination temp	
Symbol	Catalyst	MoO_3	MgO	(°C)	Remarks
a	MgMoO ₄ -MoO ₃	a		_	Precursor
b	MgMoO ₄ -MgO			_	Precursor
c	$MgMoO_4-MoO_3$	7.30	_	550	Obtained from precursor a
d	MgMoO ₄ -MgO	_	1.5	550	Obtained from precursor b
e	MgMoO ₄ -MoO ₃	7.30	_	550	Cat. c reduced with ethylbenzene at 390°C for 5 hr
f	$MgMoO_4$	0.0	_	800	Cat. c calcined for 6 hr
g	MoO_3		_	600	H ₂ MoO ₄ ·2H ₂ O calcined for 9 hr
ĥ	MgMoO ₄ ~MoO ₃	0.40	_	550	
i	MgMoO ₄ -MoO ₃	1.10	_	550	
j	MgMoO ₄ -MoO ₃	1.55	_	550	Catalysts h-s were prepared
k	$MgMoO_4-MoO_3$	2.05	_	550	from precursors containing
1	$MgMoO_4$ - MoO_3	3.95	_	550	various excess of MoO ₃
m	MgMoO ₄ -MoO ₃	4.05		550	· ·
n	MgMoO ⁴ -MoO ₃	4.15	_	550	
o	MgMoO ₄ -MoO ₃	4.45	_	550	
р	$MgMoO_4-MoO_3$	5.15	_	550	
r	MgMoO ₄ -MoO ₃	6.45	_	550	
S	MgMoO ₄ -MoO ₃	8.30	_	550	

a - = undetermined.

The care catalyst The catalyst				 			W	MgO-MoO ₃					
March			Precur	leor of	Dragge	ي وي	}				Acti	ve catalyst	
Mary	MnN	1004	active	catalyst	inactive	catalyst	Active	catalyst	Inactive	catalyst	After	Heated up	
00 w 3400 3650 sh 3138 m 3620 sh 3600 sh 3600 sh 3300 sh 3600 sh 3300 sh 900 sh	.i.	Ra	ir	Ra	ı.	Ra	ir	Ra	ıt	Ra	usage ir	10 800°C ir	Assignment
70 w 1675 s.b 1662 m 163 w 1648 m 1640 w 1640 w ————————————————————————————————————	340(*	3400	3650 sb	3400	3650 sb	335	8 m	362i 330i 318t	0 sh 0 sh 0 vs	3610 m 3300 vw		ν(OH)
948 vs 965 vs 988 m 989 vs 988 vs </td <td>167(</td> <td>ж (</td> <td>167</td> <td>5 s,b</td> <td>166 168</td> <td>2 m 11 s</td> <td>163</td> <td>м 0:</td> <td>163.</td> <td>8 H H</td> <td>1640 vw 1614 vw</td> <td>1</td> <td>(нон)</td>	167(ж (167	5 s,b	166 168	2 m 11 s	163	м 0:	163.	8 H H	1640 vw 1614 vw	1	(нон)
948 vs 962 vs 951 vs 966 vs 961 vs 958 sh 936 vs 948 vs 971 w 945 s 952 vs 953 vs 951 vs 958 vs 858 vs 858 vs 850 vs							985 sh	m 886		990 vw	48 sh	981 vs	$\nu(\text{Mo=O})$
885 m 916 vs 898 w 825 s 840 s 824 vs 877 m 886 vs 875 m 882 vs 880 sh 850 m 840 vs 845 m 805 s,b 810 sh 814 vw 820 s 871 m 865 s 875 m 820 s 870 sh 895 s 880 sh 830 m 840 vs 845 m 805 s,b 810 sh 814 vw 820 s 755 s 875 m 820 s sh 820 s 870 s 820 s,b 766 s 751 m 726 w 720 w 730 m 721 m 726 m 720 s 765 s 771 s 720 vw 730 m 721 m 726 m 720 s 760 sh 720	951 sh 941 vs	948 vs 936 vs	962 vs	971 w 940 vs	945 s 920 vs	978 06	962 vs 939 vs	965 vs 955 vs	951 vs 935 vs	966 vs	961 vs	958 sh	$\nu_1(A_1) \text{ MoO}_4^{2-}$
885 m 916 vs 900 sh 900 sh 900 sh 895 s 850 m 862 s 870 s 884 vs 877 m 886 vs 875 m 882 vs 880 sh 850 m 862 s 870 s 845 m 805 sh 825 s 857 m 885 vs 880 sh 830 m 783 s 720 vw 730 m 721 m 765 s 771 s 771 s 770 sh 640 sh, vb 660 sh 772 m 771 s 770 sh 640 sh, vb 640 sh, vb 660 sh 442 sh 442 sh 442 sh 420 vs 440 sh 440 sh <td>925 s</td> <td></td> <td></td> <td>917 w</td> <td></td> <td></td> <td>921 sh</td> <td>928 w</td> <td>925 sh</td> <td></td> <td>924 sh</td> <td>928 sh</td> <td></td>	925 s			917 w			921 sh	928 w	925 sh		924 sh	928 sh	
850 m 862 s 870 s 850 s 884 vs 877 m 886 vs 875 m 880 sh 830 m 840 vs 845 m 805 s,b 825 s 855 m 851 m 860 sh 830 m 840 vs 845 m 805 s,b 810 sh 825 s,b 765 s 771 s 810 sh 860 sh 720 vw 730 m 721 m 726 m 729 s 650 sh 771 s 729 s 650 sh 640 sh,vb 870 sh 640 sh,vb 841 sh 444 sh 427 vw 439 s 440 sh 440 sh 444 sh 427 vw 440 sh	915 m	885 m	916 vs	w 868				910 s	900 sh	м 906	4s 006	895 s	
830 m 845 m 805 s,b 825 s 855 m 851 m 810 sh 811 ww 820 s 851 m 810 sh 829 s,b 829 s,b 820 sh	865 s	850 m	862 s	870 s	820 s	840 s	884 vs	877 m	886 vs	875 m	882 vs	48 088	
723 s,b 720 vw 730 m 721 m 726 s 771 s 771 s 829 s,b 623 s,b 720 vw 730 m 721 m 726 m 726 s 771 s 771 s 772 s 850-770 m,vb 772 m 772 s 850-770 m,vb 860 sh 810 sh 440 sh 860 sh 810 sh	792 s,b	830 m	840 vs	845 m	805 s,b		825 s	855 m		851 m			$\nu_3(F_2)~{ m MoO_4}^{2-}$
623 s.b 720 vw 730 m 721 m 726 m 729 s 650-770 m,vb 720 s 640 sh, vb 640 sh, vb 444 sh 427 vw 439 s 440 sh 640 sh, vb 444 sh 420 vw 420 vw 440 sh 444 sh 420 vw 440 sh 352 sh 440 sh 352 sh 440 sh 352 sh 364 m 352 sh 364 m 352 sh 364 m 352 sh 364 m 352 sh 860 sh 444 sh 352 sh 860 sh 440 sh 860 sh 860 sh 440 sh 860 sh 860 sh 360 sh </td <td></td> <td></td> <td>783 s</td> <td></td> <td></td> <td></td> <td>810 sh</td> <td>814 vw</td> <td>820 s</td> <td></td> <td>816 s</td> <td>829 s,b</td> <td></td>			783 s				810 sh	814 vw	820 s		816 s	829 s,b	
623 s,b 720 vw 730 m 721 m 726 m 729 s 650-770 m,vb 660 sh 670 sh 640 sh,vb 650-770 m,vb 444 sh 427 vw 439 s 440 sh 640 sh,vb 440 sh 441 s 414 s							299 <i>L</i>		765 s		771 s		
428 s,b 550-650 w,vb 660 sh 670 sh 670 sh 640 sh,vb } 428 s,b 385 w 420 vs 420 vs 420 vs 440 sh 414 sh 345 m 385 w 377 sh 383 m 380 sh 381 m 375 sh 345 m 346 m 372 sh 372 sh 372 sh 301 m 315 s 314 sh 348 m 345 vs 301 m 315 s 314 vs 339 s 325 s 330 sh 244 m 245 sh 276 m 276 m 278 w 241 m 162 s 165 m 204 m 204 vw 176 w 155 w 165 m 176 w 175 w 135 w 122 w 155 w 155 w 102 m 95 vw 94 w 95 m	725 s,b			720 vw	730 m		721 m		726 m		729 s	(dv, m, vb)	V(MOOMo)
428 s,b 385 w 444 sh 427 vw 439 s 440 sh 345 m 385 w 377 sh 383 m 380 sh 381 m 375 sh 345 m 356 vs 372 s 358 s 364 m 375 sh 340 sh 345 sh 348 m 345 vs 345 vs 301 m 315 s 314 vs 339 s 325 s 330 s 301 m 315 s 314 vs 303 s 325 w 310 sh 225 ss 244 m 245 sh 229 m 276 m 276 m 278 m 274 m 162 s 165 m 205 m 178 w 176 w 135 w 147 m 127 vw 125 w 102 m 95 vw 94 w 95 m			623 s,b		550-65	0 w,vb	48 099				670 sh	640 sh,vb	(21112211)
42.0 vs 402 vw 414 s 345 m 385 w 377 sh 380 sh 381 m 375 sh 345 m 356 vs 372 s 358 s 364 m 352 vs 340 sh 345 sh 348 m 345 vs 352 vs 301 m 315 s 314 vs 303 s 325 s 330 s 301 m 315 s 314 vs 303 s 325 w 310 sh 274 s 244 m 245 sh 229 m 276 w 276 w 274 sw 162 s 165 m 204 m 204 m 204 vw 178 w 178 w 176 w 155 w 122 w 155 w 102 m 95 vw 94 w 95 m	700		900				444 sh	427 vw	439 s		440 sh		
345 m 358 s 365 m 375 sh 383 m 380 sh 381 m 375 sh 352 vs 356 vs 350 sh 381 m 375 sh 352 vs 356 vs 350 sh 330 sh 339 s 325 s 330 sh 339 s 325 w 310 sh 2297 sh 276 m 276 sh 276 m 229 w 227 w 229 m 220 w 226 vw 241 m 224 m 205 m 205 m 204 m 204 vw 165 m 127 vw 122 w 155 w 165 m 127 vw 122 w 155 w 162 m 95 vw 94 w 95 m	403 VS		470 S,D				470 vs	402 vw	•		414 s	-	
340 sh 345 sh 348 m 345 vs 350 vs 364 m 352 vs 340 sh 352 vs 340 sh 345 sh 348 m 345 vs 348 m 274 sh 276 m 229 m 228 vw 244 m 245 sh 250 m 204 m 204 vw 165 m 178 w 176 w 155 w 155 m 162 s 165 m 157 vw 122 w 155 w 165 m 162 m 162 w 155 w	380 Sh	245 m	369	385 W			377 sh	383 m	380 sh	381 m	375 sh		$\nu_4(F_2)$ and
340 sh 348 sh 348 m 345 vs 301 m 315 s 314 vs 330 sh 332 s 330 s 301 m 297 sh 276 sh 276 m 278 m 274 s 244 m 245 sh 229 m 250 w 256 vw 241 m 162 s 165 m 205 m 204 m 204 m 155 w 178 w 176 w 155 w 122 vw 155 w 102 m 95 vw 95 w	344 s	111 C±C	\$ 900	111 000			S A OC C	S 7/5	300 S	204 E	327 VS		$v_3(\text{MgO}_6)\text{MoO}_4^{\star-}$
301 m 315 s 330 sh 339 s 325 s 330 s 297 sh 275 sh 276 sh 276 sh 276 m 278 m 274 s 244 m 245 sh 229 m 250 w 250 w 250 w 241 m 210 m 205 m 204 m 204 m 204 w 162 s 165 m 178 w 176 w 135 w 127 vw 122 w 155 w 102 m 95 vw 94 w 95 m	330 sh			340 sh		345 sh		348 m		345 vs			
315 s 314 vs 303 s 325 w 310 sh 295 s 297 sh 276 sh 276 m 278 m 274 s 245 sh 229 m 250 w 256 vw 241 m 210 m 205 m 204 m 204 vw 165 m 178 w 176 w 147 m 156 m 155 w 102 m 95 vw 94 w	$302 \mathrm{sh}$					330 sh		339 s	325 s	330 s			
297 sh 276 sh 276 sh 276 sm 274 s 245 sh 229 m 250 w 256 vw 241 m 210 m 205 m 204 m 204 vw 165 m 178 w 176 w 147 m 127 vw 122 w 102 m 95 vw 94 w		301 m		315 s		314 vs	303 s	325 w	$310 \mathrm{sh}$		295 s		$\nu_2(E) \operatorname{MoO_4}^{2-}$
245 sh 229 m 250 w 256 vw 241 m 227 w 228 vw 228 vw 240 m 204 m 204 m 204 m 178 w 176 w 155 m 155 m 157 vw 122 w 122 w 95 vw 94 w 95 m				297 sh			276 sh	276 m		278 m	274 s		and $\nu_3({ m MgO_6})$
227 w 228 vw 228 vw 205 m 204 m 204 vw 165 m 178 w 176 w 176 w 156 m 155 w 102 m 95 vw 94 w 95 m		244 m		245 sh		229 ш		250 w		256 vw	241 m		
210 m 205 m 204 w 204 vw 165 m 178 w 176 w 147 m 156 m 155 w 102 m 95 vw 94 w 95 m								227 w		228 vw			
165 m 178 w 176 w 147 m 156 m 155 w 155 m 157 vw 122 w 125 w 102 m 95 vw 94 w 95 m				210 m		205 m		204 m		204 vw			$ u_4({ m MgO_6}) $
147 m 156 m 155 w 122 w 122 w 122 w 102 m 95 vw 94 w 95 m		162 s		165 m				178 w		176 w			
127 vw 122 w 1 102 m 95 vw 94 w		ļ		147 m				156 m		155 w			Rotational and
95 vw 94 w		135 w				127 vw		122 w		125 w			translational
				102 ш		95 vw		94 w		95 m			modes

samples (1 g) ground into 0.2-1.0 mm grains were diluted with quartz of the same grain size in a molar ratio of 1:1. Catalytic activities were estimated at 500°C for a contact time of 0.075 g sec/cm³ at a 1:2 molar ratio of ethylbenzene to oxygen. Ethylbenzene was introduced into the reaction zone as a mixture with air. The reaction products were analyzed by gas chromatography methods. The active catalysts yielded 26% styrene and small

amounts of benzene, toluene, CO, CO_2 and some solid products. The inactive catalysts yielded under the same conditions about 2% styrene.

Specific surface measurements have shown that it was similar in all cases and amounted to 6-7 m²/g for samples in which excess percentage of MoO₃ did not exceed 6%.

The ir spectra were measured between 200-4000 cm⁻¹ in a Perkin-Elmer 621

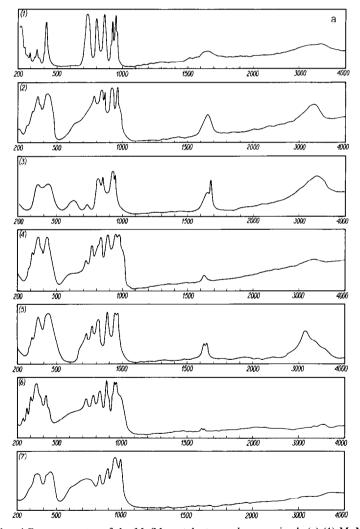
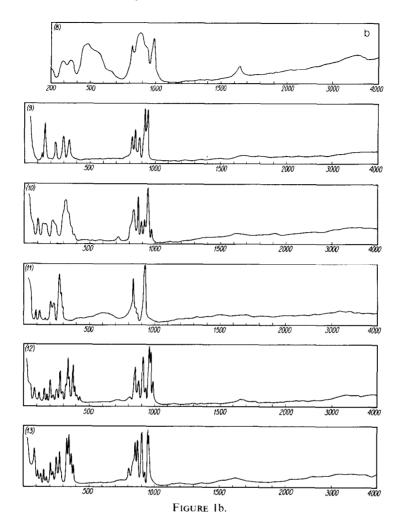



Fig. 1. Infrared and Raman spectra of the Mg/Mo catalyst samples examined: (a) (1) MnMoO₄ (ir); (2) precursor of active catalyst (ir); (3) precursor of inactive catalyst (ir); (4) active catalyst (ir); (5) inactive catalyst (ir); (6) active catalyst after usage (ir); (7) active catalyst heated up to 800°C (ir); (b) (8) MoO₃ (ir); (9) MnMoO₄ (Ra); (10) precursor of active catalyst (Ra); (11) precursor of inactive catalyst (Ra); (12) active catalyst (Ra); (13) inactive catalyst (Ra).

spectrophotometer by conventional solid state techniques (pressed KBr disc, Nujol and hexachlorobutadiene mulls). The Raman spectra of powders from 50 to 400 cm⁻¹ have been recorded in a JEOL Raman spectrophotometer Model 73 equipped with a 200 mW Ar laser. Measurements were carried out by the rotating disc method and in glass capillary tubes.

ESR measurements were made in a JEOL spectrometer Model 3MX at room temperature. Frequencies were determined by means of a free DPPH radical, assuming $G_{\rm DPPH} = 2.0037$.

DTA measurements were made in a MOM derivatograph (F. Paulik, J. Paulik,

L. Erdey system) over the temperature range of 20–1000°C.

III. Results and Discussion

A. Infrared and Ra Studies

The ir and Ra frequencies of the samples examined are listed in Table 2 and Fig. 1.

A comparison of the ir and Ra spectra in solid solutions a-f (Fig. 1, Table 2) shows a number of important differences. Some bands possess different contours and differ in their intensities. The intensities and energy sequences of the other bands remain unchanged which indicates that the com-

position of the solutions in question is not uniform. The "constant" band pattern corresponds to magnesium molybdate MgMoO₄, high intensities of these bands being an evidence that this component predominates in solid solutions.

Magnesium molybdate is expected to display an isotypic structure with either tetrahedral or octahedral coordination around Mo. A comparison between the spectra of our magnesium molybdates and α -MnMoO₄ and that of α -CoMoO₄ reported by Cord et al. (6) shows that the MgMoO₄ obtained have a tetrahedral structure of coordination polyhedra which is isotypic to α-MnMoO₄. Since magnesium and maganese molybdates have an identical band pattern, one may assume that the basic structural unit of MgMoO₄ is the system of tetrahedra in the C_2 and C_8 lattice and the space group has a C_{2h}^3 symmetry. This is also indicated by the theoretical description of vibrational spectra based upon the group theory (Table 3).

Table 3 presents a correlation of the four frequencies characteristic of the tetrahedron (space group T_d) with the space group symmetry (factor group) C_{2h} and the symmetry in lattice nodes C_2 and C_s . According to this scheme, both in the ir and Ra spectra six groups of bands should be expected to appear in the stretching

frequency range v(MoO₄) which correspond to the v_1 : $A(C_2)$ and $A'(C_8)$ and v_3 : $A(C_2)$, $B(C_2)$, $A'(C_s)$ and $A''(C_s)$ vibrations, being additionally split as a result of the lattice effect. The main peaks for these frequencies appear (Table 2) in the spectrum of α -MnMoO₄ at 941, 925, 915, 865, 792 and 725 cm⁻¹ while for the catalysts with a MgMoO₄ carrier at 935-968, 910, 880, 820, 770-760 and 730-720 cm⁻¹. It seems therefore, that such a pattern of bands classed in this frequency region is typical of the entire group of tetrahedral molybdates isotypic to α -MnMoO₄. A relatively broad stretching vibration energy range of 700-970 cm⁻¹ results from a considerably distorted tetrahedron whose Mo-O distances vary from 1.72 to 1.85 Å (2). Over the deformation frequency range δ (OMoO), that is from 450 to 200 cm⁻¹, there is no such a distinct contour as in the case of stretching frequencies. In this range the $\delta(MoO_4)$ and $\nu(MgO_6)$ frequencies overlap, and hence, it is very difficult to assign the bands. In Table 4 we have suggested a description of normal frequencies for the MoO₄²⁻ tetrahedra in lattice nodes C_2 and C_s . Over the energy range below 250 cm⁻¹, the radiation is absorbed by the external modes, that is by the rotational and traslational modes.

It was more difficult to establish the

Space group symmetry C_{2h}	Symmetry in lattice node C_2	Point group symmetry T_d	Symmetry in lattice node C_s	Space group symmetry C_{2h}
 Ag(ax2, y2, z2, xy)_		ν ₁ (Α ₁)		$A_{g}(\alpha_{x^{2}, y^{2}, z^{2}, xy})$
A _u (T _z)	A	ν ₂ (E)		$\searrow_{B_{u}}(T_{x,y})$
Β _g (α _{xz, yz})	- Bund	ν ₃ (F ₂)	Δ"/	$B_g(\alpha_{xz,yz})$
B _u (T _{x,y})		ν ₄ F ₂		$\Delta_{u}(T_{z})$

TABLE 4
Assignment of Normal Modes of Vibrations

a^a	b	c	d	e	C_{2h}	C_2 and C_s	T_d
951	962	945	962	951	A _u (ir) ——	A (C)	
948	971		965	966	А _д (Ra) ——	A (C ₂)	ν
941		920	939	935	B _u (ir) ——	> A'(C _s)/	····· ν ₁ Α ₁
936	940	928	955	953	A _g (Ra) ——	7 (0 _s)	
	916	920	921	925	A _u (ir)		
925	917	928	928	923	A _g (Ra) ——	> A(C ₂)	
915	916	920		900	B _u (ir) —	(
885	917	928	910	906	А _д (Ra) ——	A'(C _c)—	\
850	898	840	877	875	Δ _g (Ra)	A (C _S)	
792	783	805	766	765	B _u (ir) ——/	,	ν_3 F ₂
865	862	850	884	886	A _u (ir) ——	> A"(C _c)//	/
	845		814		B _g (Ra) ——	$A(C_s)$	
	840	805	825	820	B _u (ir) —		
830	870	840	855	851	B _g (Ra) ——) D(C)	
725	720	730	721	726	B _u (ir), B _g (Ra)	B(C ₂)	
403	428	440	444	439	A _u (ir)	A (C ₂)—	
			427		Ag (Ra) ——	~ (°2′ \	
403	428		420		B _u (ir) —	\	
	385		402	381	A_{g} (Ra) ——	\rightarrow A'(C _S)— \	
351	358		356	358	B _u (ir) ——	1 7 (°s' \	\
	365	345	348	345	А _д (Ra) ——	/	ν ₄ F
	365		383	364	Bg (Ro) ——	\	1 4 1
380			377	380	B _u (ir) —	B(C ₂)	/
345	365		372		B _g (Ra) ———	B(C ₂) - /	
344	358				B _u (ir) ——	/	
330				325	A _u (ir) ——	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
301	340	330	339	330	B _g (Ra) ———	\rightarrow A"(C _S)	
302			303	310	A _u (ir)	×	
301	315	314	325	330	A _g (Ra) ——	A (C ₂)	
300			276		B _u (ir)	\	
	297		276	278	Ag (Ra) ——	> A'(C _S)\	\ _
280					B _u (ir) —	NO. /	ν ₂ Ε
244	245	229	227	228	B _g (Ra) ——	> B(C ₂)/	/
248					A _u (ir) ——	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	210	205	204	204	B _g (Ra) ——	A"(C) —	

^a a, b-e solid solutions (see Experimental Methods).

structure of another component in solid solutions under investigation. This is because the corresponding bands are rather weak and appear often as shoulders on the slopes of strong and broad MgMoO₄ bands. The arrangement of bands as well as their energy levels differ from those of the MgMoO₄ spectrum which shows that the molybdenum atom has a different coordination. The nature of the spectra is very similar to that observed for MoO₃ (spectrum 8, Fig. 1) and for α -CoMoO₄ (6). The ir band positions for MoO₃ and for another component of solid solutions are listed in Table 5.

The structural elements of MoO₃ and α -CoMoO₄ are the chains of octahedra in which like in the 2,3 and 4-molybdates discussed above (4) three types of interatomic distances Mo-O occur (7). Thus the ν (MoO) stretching mode which absorbs

in the tetrahedral molybdates over the frequency range of 700-970 cm⁻¹, should appear in the octahedral compounds over a broader region than previously. The $\nu(MoO)$ frequency in the spectra of MoO₃ (Table 5) and Fe^{II}, Co and Ni α -molybdates reported by Cord et al. (6) was, in fact, found to increase up to 980-990 cm⁻¹ and, simultaneously, the lower stretching vibration limit to decrease from 700 to 500 cm⁻¹. The former effect results from shorter molybdenum-oxygen bonds in the octahedron. On the other hand, a decrease in frequency below 700 cm⁻¹ is indicative of the presence of long bonds [2.30-2.33 Å (7)] typical of the octahedral MoO_6^{6-} molecule, apart from 1.72-2.00 Å bonds characteristic of the MoO_4^{2-} tetrahedra (2). The same effects are found in the spectra of solid solutions measured in the present work. The bands

TABLE 5
Infrared Spectrum of Molybdenum Trioxide and Active Component of the Catalysts

Active phase frequencies	Pure MoO ₃ frequencies	O_h	C_s	$V_h^{16}(zx)$
985–990	991 s 915 sh	ν ₁ (MoO ₆) Α _{1g}	—— А́ —	$B_{1u}(T_z)$ $B_{3u}(T_x)$
Obscured	865 s,b 820 s 660 m,sh	ν ₃ (ΜοΟ ₆)F _{1u} —	A"_	$B_{1u}(T_z)$ $B_{3u}(T_x)$ $B_{2u}(T_y)$
550-650 {	567 s,b 470 s,b =	$ u_4({ m MoO_6}){ m F_{fu}}$ _	A'-	B _{3u} B _{2u}
Obscured	375 m 300 m =	$ u_{\rm 5}({ m MoO}_{ m 6}){ m F}_{ m 2g}$ —	A'-	B _{3u} B _{2u}

corresponding to the second solution component appear at 980 cm⁻¹ and over the 550-670 cm⁻¹ range. Furthermore, these bands depend directly on the method of catalyst preparation, that is their intensities increase as the MoO₃ contents in solid solution increases. These bands are not found in inactive samples which contain excess MgO (MgMoO₄-MgO) or stoichiometric MgMoO₄.

In conclusion, it may be stated that the active catalysts form a two-component solid solution MgMoO₄-MoO₃ where the MgMoO₄ phase has a tetrahedral structure and acts as a "carrier" of the active octahedral phase.

B. DTA and DTG Studies

The DTA and DTG analyses made on the precursors of active and inactive catalysts have shown that no phase transition takes place at temperatures up to 500°C and only a few endothermic and mass effects resulting from loss of water are observed to occur at about 110, 145, 200 and 275°C. It is, however, interesting to note the results of thermodifferential DTA and DTG analyses for active and inactive magnesium molybdates at higher temperatures (Fig. 2).

At temperatures exceeding 600°C an endothermic effect accompanied by the mass decrement is found in both active catalysts and MoO₃. This results most certainly from sublimation of molybdenum trioxide. On the other hand, MoO3 was not found to sublime in an inactive sample since it does not contain any excess molybdenum trioxide. Pure MoO₃ begins to sublime at a considerably lower temperature than MoO₃ from the active MgMoO₄-MoO₃ catalyst. Thus, it may be suggested that in the latter case MoO₃ is more strongly bound to the MgMoO₄ "carrier." One may add, however, that with 2 hr heating at 800°C the active catalyst loses its activity due to the loss of excess MoO₃.

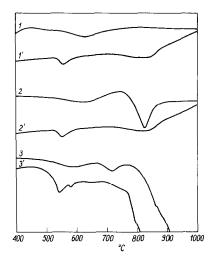


FIG. 2. DTG and DTA analyses of catalysts and MoO₃. Experimental conditions: temp, 20–1000°C; atmosphere in the furnace: air; DTA sensitivity, 1/2; DTG sensitivity, 1/3; heating rate, 10°C/min. (1,1') active catalyst; (2,2') inactive catalyst; (3,3') molybdenum trioxide; (1,2,3) DTG; (1', 2', 3') DTA.

C. ESR Studies

The activity of selective oxidation catalysts is usually related to the formation of a redox-type complex. In our case one could have assumed that it will be related to the formation of a Mo⁵⁺ ion containing complex. For this reason, ESR spectroscopy methods were applied to the examined catalysts which enabled us to determine the Mo(V) content, to draw certain conclusions on the energy level splitting in the crystal field and enabled us to establish the structures of active centers.

The low Mo(V) concentration in the catalysts, of an order 10¹⁹ spins/g, was insufficient to apply conventional magnetic methods. Therefore, we have employed ESR spectroscopy. The ESR spectra of all active MgMoO₄-MoO₃ catalysts have shown a similar signal which is not found in the samples of MoO₃ and inactive magnesium molybdates. A typical ESR spectrum in the form of an absorption curve and its derivative is presented in Fig. 3.

The spectrum exhibits an asymmetric ESR signal with three factors: $g_x = 1.930$,

Fig. 3. ESR spectrum of MgMoO₄-MoO₃ catalyst.

 $g_y = 1.943$ (corresponding to g_{\perp}) and $g_z = 1.893$ of the $g_{||}$ character. The spectrum was calibrated on the basis of the sixth Mn^{2+} line for which g = 1.886. The average tensor $\langle g \rangle = 1/3(g_x + g_y + g_z)$ is 1.922 in our case and the line width is about 60 G. This signal is assigned to Mo(V) in an environment of nonaxial symmetry. Only a very weak satelite line absorption, possibly due to the hyperfine structure resulting from the odd isotopes of Mo (95 Mo, J = 5/2 – natural abundance 15.7%; and ${}^{97}\text{Mo}$, J = 5/2 - 9.45%) is observed. The spectral curves and signal width remain almost unchanged over the temperature range of 20-500°C. Such a temperature independence of the signal suggests that the main reason of the line broadening is a nonhomogeneous distribution of Mo(V) in the catalyst.

The ESR signal presented in Fig. 3 may be interpreted by means of a spin hamiltonian for the d^1 electron configuration in

the field of nonaxial symmetry: $\mathcal{H} = g_x H_x S_x + g_y H_y S_y + g_z H_z S_z$.

As established on the basis of the ir and Ra spectra (Sect. III A), molybdenum trioxide coordinated on a carrier has a distorted octahedral structure. In the first approximation this distortion is described by an axial C_{4v} symmetry and further straining leads to the C_{2v} symmetry. Distortion of the MoO₆⁶⁻ polyhedron, observed in MoO₃ deposited on a carrier leads to strength decrease of some molybdenum-oxygen bonds. Calcination of the catalysts at high temperatures probably causes the lost of the oxygen atom in the corner of some of distorted octahedrons. Such "oxygen hole" leads to the formation of the penta-coordinated MoO₅5- ion with a C_{2n} orthorhombic pyramidal arrangement.

A correlation of point groups O_h , C_{4v} and C_{2v} with the energy trends maintained is shown in Fig. 4.

The crystal field of the MXY₅ type molecule is then characterized by two parameters Δ and δ while for the $C_{2\nu}$ molecule by three parameters Δ , δ and η . The $\langle g \rangle$ factor for a paramagnetic molecule with an orbitally nondegenerate ground state differs from 2.0023 due to the mixing of ground and excited states via spin-orbit coupling. The expressions for the $\langle g \rangle$ values for d^1 transition metal oxycations have been introduced by Ballhausen and Gray (8):

$$g_z=2.0023\left(1-\frac{4\lambda}{\Delta}\right),\,$$

$$g_x = 2.0023 \left(1 - \frac{\lambda}{\eta}\right),$$

$$g_y = 2.0023 \left(1 - \frac{\lambda}{\delta}\right),\,$$

where λ is the spin-orbit coupling constant for the Mo⁵⁺ ion (in MoO₅⁵⁺) contained in the active center of the catalyst. The free ion constant λ is drastically reduced in the

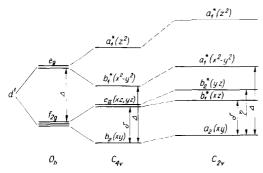


Fig. 4. Energy levels scheme of the Mo(V) ion in a O_h , C_{4r} and C_{2r} fields.

oxycations. For instance, it drops from 380 cm⁻¹ for Cr^{3+} to 65 cm⁻¹ for $CrOX_5^{2-}$, from 1030 for Mo^{5+} to 240 cm $^{-1}$ for $MoOX_5^{2-}$ and from 2500 for W^{5+} to $500-900 \text{ cm}^{-1}$ for WOX₅²⁻ (9). Since the λ coupling constant for Mo⁵⁺ surrounded by the oxygen atoms has not been determined until now, it may only be estimated by analogy with respect to the W5+ ions. According to Brisden et al. (9), for tungsten and molybdenum the λ constant for the MOX_5^{2-} type complexes amounts to 20% of that for the free ion, while for the WOX_4^- complexes—to about 50%. These authors suggest that the WOX₄⁻ type compounds have higher \(\lambda\)'s owing to the interactions between the oxygens of neighboring ions. For our calculations we have assumed the value of 360 cm⁻¹ for molybdenum which is 35% of the free Mo5+ ion, that is an average value between the MOX_5^{2-} and MOX_4^{-} oxycompounds. The parameters for such a LS coupling constant of the crystal field calculated from Ballhausen-Gray equation are $\Delta \approx 26,200$, $\delta \approx 10,000$ and $\eta \approx 12,140$ cm⁻¹.

Hence, it may be considered that the active centers of the MgMO₄-MoO₃ catalyst contain, apart from the MoO₆⁶⁻ ions, the Mo(V) ions in polyhedra, most probably of the MoO₅⁵⁻ type, of a distorted pyramid structure and C_{2r} symmetry. The $\langle g \rangle$ tensor values obtained by us, occurrence of g_x , g_y , g_z anisotropies, as well as the

values of crystal field parameters are indicative of rhombic distortion of the molybdenum(V) polyhedra.

Further data were obtained from quantitative measurements of the integral ESR signal intensity of Mo(V) for the above mentioned solid solutions. Quantitative determinations of the spin concentrations were made by the Hyde and Wyard method (10), employed also by Seshadri and Petrakis (11) in their studies on the Al₂O₃-MoO₃ catalysts. For these calculations a known relationship was used:

$$\frac{N_k}{N_u} = \left(\frac{M_k G_u}{M_u G_k}\right)^{1/2}$$

where N is the number of spins, M = integrated area, G = amplifier gain, k and u = known and unknown sample. A DPPH standard was used for which $N_k = 1.53 \times 10^{21} \text{ spins/g}$.

Figure 5a and b show the degree of ethylbenzene conversion in the oxidizing dehydrogenation process and spin concentra-

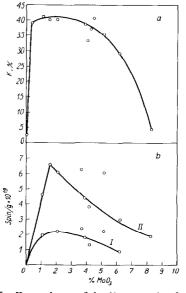


FIG. 5a. Dependence of the K conversion factor for ethylbenzene on excess MoO_3 contents in the catalysts; (b) dependence of spin number on excess MoO_3 contents in catalysts h-s: (I) new, (II) after reduction (reduction with ethylbenzene vapors in N_2 at 390°C for 30 min.

tions in the MgMoO₄-MoO₃ samples, fresh and reduced, vs the excess contents of MoO₃. Curve 5a shows that the most active catalysts are those which contain 1-3% of excess molybdenum trioxide. Further increase in the MoO₃ contents result in a decrease of activity. The curves shown in Fig. 5b indicate that the spin concentration in the catalysts varies according to the excess MoO3 contents like their activity. The Mo(V) contents in the active catalysts varies from 0.9 2.4×10^{19} spins/g and increases up to $2.4-6.8 \times 10^{19}$ spins/g on reducing the samples with ethylbenzene vapors. The ratio of spin numbers in the corresponding samples of reduced and new catalysts ranges from about 2 to 3.5. One may note that both the inactive catalysts and samples g (trioxide of molybdenum) were not reduced under these conditions and did not contain any Mo(V).

An increase in the Mo(V) contents in reduced catalysts confirms our above suggestions on the structure of active centers. One may conclude that they are formed from the distorted octahedral MoO₆⁶⁻ ions linked through an oxygen bridge with the Mo(V) ion in the orthorhombic MoO₅⁵⁻ pyramidal coordination. These could be one or several Mo(VI) ions per one Mo(V) ion. Such active centers may form a discrete pseudo-

monomolecular layer coordinated with the tetrahedral support-magnesium molyb-date.

REFERENCES

- Sleight, A. W., Acta Crystallogr. Sect. B 28, 2899 (1972); Sleight, A. W., and Licis, M. S., Mater. Res. Bull. 6, 365 (1971); Sleight, A. W., and Chamberland, B. L., Inorg. Chem. 7, 1672 (1968); Sleight, A. W., and Weiher, J. F., Inorg. Chem. 7, 1093 (1968).
- Abrahams, S. C., and Reddy, J. M., J. Chem. Phys. 43, 2533 (1965).
- Young, A. P., and Schwartz, C. M., Science 141, 348 (1963).
- Gatehouse, B. M., and Miskin, B. K., J. Solid State Chem. 9, 247 (1974); Gatehouse, B. M., and Leverett, P., J. Chem. Soc. A 2107 (1971); J. Chem. Soc. A 1398 (1968); J. Chem. Soc. A 849 (1969).
- Magarill, S. A., and Klevtsova, R. F., Sov. Phys. Crystallogr. 16, 645 (1972).
- Cord, P. P., Courtine, P., Pannetier, G., and Guillermett, J., Spectrochim. Acta Part A 28, 1601 (1972).
- 7. Smith, G. W., and Ibers, J. A., *Acta Crystallogr.* **19**, 269 (1965).
- Ballhausen, C. J., and Gray, H. B., *Inorg. Chem.* 1, 111 (1962).
- 9 Brisden, B. J., Edwards, D. A., Machin, D. J., Murray, K. S., and Walton, R. A., J. Chem. Soc. A 1825 (1967).
- Alger, R. S., "Electron Paramagnetic Resonance: Techniques and Applications," pp. 212-220.
 Wiley (Interscience), New York, 1968.
- Seshardri, K. S., and Petrakis, L., J. Phys. Chem. 74, 4102 (1970).